3.2. Характеристики рассеяния наземных объектов

Расчеты характеристик рассеяния наземных объектов были получены для следующих основных углов места зондирования є (рис. 3.198): 1° (зондирование наземными радиолокационными системами); 10° и 30° (зондирование радиолокационными системами воздушных объектов). Шаг изменения азимута зондирования составлял 1°, азимут β отсчитывался от лобового ракурса (0° соответствует зондированию в лоб танка, 180° – зондирование в направлении кормовой части корпуса). Результаты расчетов приведены для частоты облучения равной 10 ГГц (длина волны 3 см).

Рис. 3.198. Геометрия облучения наземного объекта

Результаты получены для случая совмещенного приема для двух ортогональных поляризаций зондирующего сигнала: горизонтальной – вектор напряженности электрического поля падающей волны \vec{p}_{Γ}^{0} параллелен подстилающей поверхности; вертикальной – вектор напряженности электрического поля падающей волны \vec{p}_{B}^{0} ортогонален \vec{p}_{Γ}^{0} и лежит в плоскости, перпендикулярной подстилающей поверхности и проходящей через вектор направления падающей плоской волны. Далее на всех рисунках синим цветом обозначен случай горизонтальной поляризации падающей волны, малиновым цветом – случай вертикальной поляризации.

Результаты расчетов приведены для двух типов подстилающей поверхности, имеющих наиболее характерные значения относительной диэлектрической проницаемости, а именно: для сухого суглинка ($\varepsilon' = 3 + j0,4$); для влажного суглинка (относительная влажность 20%, $\varepsilon' = 17 + j0,9$; относительная магнитная проницаемость для обоих типов почв равна 1). В случае угла места зондирования $\varepsilon = 1^{\circ}$ диаграммы приведены только для сухого суглинка, так как модули коэффициентов отражения |P| от разных подстилающих поверхностей при малых углах места практически одинаковы и приближаются к 1 (рис. 3.199). Различия между ними становятся более существенными при увеличении угла места.

Рис. 3.199. Модуль коэффициента отражения от сухого и влажного суглинков при горизонтальной (а) и вертикальной (б) поляризации зондирующего сигнала

Для наземных объектов гистограммы распределения амплитудного множителя отраженного сигнала (квадратного корня из ЭПР) приведены для двух углов места зондирования: $\varepsilon = 1^{\circ}$ и $\varepsilon = 30^{\circ}$, в двух основных диапазонах азимутов облучения: $-10^{\circ}...10^{\circ}$ и $10^{\circ}...30^{\circ}$. Для получения этих гистограмм в указанных диапазонах шаг изменения азимута выбирался равным 0,02°. Так же, как и для воздушных объектов, предложены теоретические плотности вероятности распределения амплитуд отраженных сигналов, наиболее согласующиеся с полученными в вычислительном эксперименте данными.

3.2.1. Характеристики рассеяния основного боевого танка Т-90

Танк Т-90 российского производства представляет собой последнюю модификацию машин Т-72 и принят на вооружение в 1993 году [98]. Танк Т-90 сохраняет особенность советского танкостроения – классическую компоновочную схему, при которой основное вооружение расположено в башне, силовая установка и трансмиссия – в кормовой части корпуса, а экипаж – отдельно: командир танка и наводчик в боевом отделении, механикводитель – в отделении управления. Внешне Т-90 (рис. 3.200) практически полностью повторяет форму танка Т-72Б. Сам танк Т-72 разрабатывался конструкторским бюро "Уралвагонзавода" и был создан как один из вариантов модернизации танка Т-64А производства Харьковского завода им. Малышева [99].

Для расчетов использовалась идеально проводящая модель поверхности танка, представленная на рис. 3.201.

Рис. 3.200. Основной б	боевой	Рис. 3.201. Модель поверхности T-90		
танк Т-90				
Характеристики кор	опуса	Параметры модели поверхности танка		
Длина танка с пушкой	9,53 м	Количество участков		
Ширина	3,46 м	эллипсоидов модели 89		
Высота	2,23 м	Количество кромочных участ-		
Боевой вес	46,5 т	ков в модели 34		

Рис. 3.202 Круговые диаграммы мгновенной ЭПР (ε = 1°, подстилающая поверхность – сухой суглинок)

Рис. 3.203. Диаграммы средней и медианной ЭПР в трех диапазонах азимутальных углов при зондировании на горизонтальной поляризации (ε = 1°, подстилающая поверхность – сухой суглинок)

Рис. 3.204. Диаграммы средней и медианной ЭПР в трех диапазонах азимутальных углов при зондировании на вертикальной поляризации (ε = 1°, подстилающая поверхность – сухой суглинок)

Рис. 3.205. Диаграммы средней и медианной ЭПР в двадцатиградусных диапазонах азимута при зондировании на горизонтальной поляризации (ε = 1°, подстилающая поверхность – сухой суглинок)

🛙 Средняя ЭПР 🛽 Медианная ЭПР

Рис. 3.206. Диаграммы средней и медианной ЭПР в двадцатиградусных диапазонах азимута при зондировании на вертикальной поляризации (ε = 1°, подстилающая поверхность – сухой суглинок)

Рис. 3.207. Круговые диаграммы некогерентной ЭПР (ε=1°, подстилающая поверхность – сухой суглинок)

Рис. 3.208. Круговые диаграммы мгновенной ЭПР (ε = 10 °, подстилающая поверхность – сухой суглинок)

Рис. 3.209. Диаграммы средней и медианной ЭПР в трех диапазонах азимутальных углов при зондировании на горизонтальной поляризации ($\varepsilon = 10^{\circ}$, подстилающая поверхность – сухой суглинок)

Рис. 3.210. Диаграммы средней и медианной ЭПР в трех диапазонах азимутальных углов при зондировании на вертикальной поляризации (ε = 10°, подстилающая поверхность – сухой суглинок)

Рис. 3.211. Диаграммы средней и медианной ЭПР в двадцатиградусных диапазонах азимута при зондировании на горизонтальной поляризации (ε = 10°, подстилающая поверхность – сухой суглинок)

Рис. 3.212. Диаграммы средней и медианной ЭПР в двадцатиградусных диапазонах азимута при зондировании на вертикальной поляризации (ε = 10°, подстилающая поверхность – сухой суглинок)

Рис. 3.213. Круговые диаграммы некогерентной ЭПР (ε = 10°, подстилающая поверхность – сухой суглинок)

Рис. 3.214. Круговые диаграммы мгновенной ЭПР (ε = 10°, подстилающая поверхность – влажный суглинок)

Рис. 3.215. Диаграммы средней и медианной ЭПР в трех диапазонах азимутальных углов при зондировании на горизонтальной поляризации (ε = 10°, подстилающая поверхность – влажный суглинок)

Рис. 3.216. Диаграммы средней и медианной ЭПР в трех диапазонах азимутальных углов при зондировании на вертикальной поляризации (ε = 10°, подстилающая поверхность – влажный суглинок)

Рис. 3.217. Диаграммы средней и медианной ЭПР в двадцатиградусных диапазонах азимута при зондировании на горизонтальной поляризации (ε = 10°, подстилающая поверхность – влажный суглинок)

⊠ Средняя ЭПР ⊠ Медианная ЭПР

Рис. 3.218. Диаграммы средней и медианной ЭПР в двадцатиградусных диапазонах азимута при зондировании на вертикальной поляризации (ε = 10°, подстилающая поверхность – влажный суглинок)

Рис. 3.219. Круговые диаграммы некогерентной ЭПР (ε = 10°, подстилающая поверхность – влажный суглинок)

388

Рис. 3.220. Круговые диаграммы мгновенной ЭПР (ε = 30°, подстилающая поверхность – сухой суглинок)

Рис. 3.221. Диаграммы средней и медианной ЭПР в трех диапазонах азимутальных углов при зондировании на горизонтальной поляризации (ε = 30°, подстилающая поверхность – сухой суглинок)

Рис. 3.222. Диаграммы средней и медианной ЭПР в трех диапазонах азимутальных углов при зондировании на вертикальной поляризации (ε = 30°, подстилающая поверхность – сухой суглинок)

Рис. 3.223. Диаграммы средней и медианной ЭПР в двадцатиградусных диапазонах азимута при зондировании на горизонтальной поляризации (ε = 30°, подстилающая поверхность – сухой суглинок)

Рис. 3.224. Диаграммы средней и медианной ЭПР в двадцатиградусных диапазонах азимута при зондировании на вертикальной поляризации (ε = 30°, подстилающая поверхность – сухой суглинок)

Рис. 3.225. Круговые диаграммы некогерентной ЭПР (ε = 30°, подстилающая поверхность – сухой суглинок)

Рис. 3.226. Круговые диаграммы мгновенной ЭПР (ε = 30°, подстилающая поверхность – влажный суглинок)

Рис. 3.227. Диаграммы средней и медианной ЭПР в трех диапазонах азимутальных углов при зондировании на горизонтальной поляризации (ε = 30°, подстилающая поверхность – влажный суглинок)

Рис. 3.228. Диаграммы средней и медианной ЭПР в трех диапазонах азимутальных углов при зондировании на вертикальной поляризации ($\epsilon = 30^{\circ}$, подстилающая поверхность – влажный суглинок)

Рис. 3.229. Диаграммы средней и медианной ЭПР в двадцатиградусных диапазонах азимута при зондировании на горизонтальной поляризации (ε = 30°, подстилающая поверхность – влажный суглинок)

Рис. 3.230. Диаграммы средней и медианной ЭПР в двадцатиградусных диапазонах азимута при зондировании на вертикальной поляризации (ε = 30°, подстилающая поверхность – влажный суглинок)

Рис. 3.231. Круговые диаграммы некогерентной ЭПР (ε = 30°, подстилающая поверхность – влажный суглинок)

394

Рис. 3.232. Распределение амплитудного множителя отраженного сигнала в диапазоне азимутов –10°...+10° при зондировании на горизонтальной поляризации (ε = 1°, подстилающая поверхность – сухой суглинок)

Рис. 3.233. Распределение амплитудного множителя отраженного сигнала в диапазоне азимутов –10°...+10° при зондировании на горизонтальной поляризации (ε = 1°, подстилающая поверхность – влажный суглинок)

Рис. 3.234. Распределение амплитудного множителя отраженного сигнала в диапазоне азимутов 10°...30° при зондировании на горизонтальной поляризации (ε = 1°, подстилающая поверхность – сухой суглинок)

Рис. 3.235. Распределение амплитудного множителя отраженного сигнала в диапазоне азимутов 10°...30° при зондировании на горизонтальной поляризации (ε = 1°, подстилающая поверхность – влажный суглинок)

Таблица 3.8. Параметры законов распределения амплитуд отраженного сигнала при угле места зондирования 1°

Диапазон азимутов	Тип	грунта	Поляризация зондирующего сигнала	Тип распределения	Параметры рас- пределения
−10°+10°	сухой	суглинок	горизонтальная	логнормальное распределение: $p(x) = \frac{1}{\sqrt{2\pi} x\sigma} exp\left(-\frac{(log(x) - \mu)^2}{2\sigma^2}\right)$	$\mu = 1,44945$ $\sigma = 1,06818$
			вертикальная	логнормальное распределение	$\mu = 1,40716$ $\sigma = 1,09705$
	влажный	суглинок	горизонтальная	логнормальное распределение	$\mu = 1,45733$ $\sigma = 1,06933$
			вертикальная	логнормальное распределение	$\mu = 1,36692$ $\sigma = 1,09704$
10°30°	сухой	сутлинок	горизонтальная	нормальное распределение: $p(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$\mu = 2,57101$ $\sigma = 1,148921$
			вертикальная	распределение Вейбулла: $p(x) = \frac{c}{b} \left(\frac{x}{b}\right)^{c-1} e^{-\left(\frac{x}{b}\right)^{c}}$	b = 2,75873 c = 2,32431
	влажный	суглинок	горизонтальная	нормальное распределение	$\mu = 2,58899$ $\sigma = 1,15612$
			вертикальная	распределение Вейбулла	b = 2,671515 c = 2,320417

Рис. 3.236. Распределение амплитудного множителя отраженного сигнала в диапазоне азимутов –10°...+10° при зондировании на горизонтальной поляризации (ε = 30°, подстилающая поверхность – сухой суглинок)

Рис. 3.237. Распределение амплитудного множителя отраженного сигнала в диапазоне азимутов –10°...+10° при зондировании на горизонтальной поляризации (ε = 30°, подстилающая поверхность – влажный суглинок)

Рис. 3.238. Распределение амплитудного множителя отраженного сигнала в диапазоне азимутов 10°...30° при зондировании на горизонтальной поляризации (ε = 30°, подстилающая поверхность – сухой суглинок)

Рис. 3.239. Распределение амплитудного множителя отраженного сигнала в диапазоне азимутов 10°...30° при зондировании на горизонтальной поляризации (ε = 30°, подстилающая поверхность – влажный суглинок)

Таблица 3.9. Параметры законов распределения амплитуд отраженного сигнала при угле места зондирования 30°

Диапазон азимутов	Тип	грунта	Поляризация зондирующего сигнала	Тип распределения	Параметры рас- пределения
-10°+10°	сухой	суглинок	горизонтальная	логнормальное распределение: $p(x) = \frac{1}{\sqrt{2\pi} x\sigma} exp\left(-\frac{(log(x) - \mu)^2}{2\sigma^2}\right)$	$\mu = 1,117329$ $\sigma = 0,96877$
			вертикальная	нормальное распределение: $p(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$\mu = 1,588124$ $\sigma = 0,732297$
	ный	суглинок	горизонтальная	логнормальное распределение	$\mu = 1,48526$ $\sigma = 1,01046$
	влаж		вертикальная	логнормальное распределение	$\mu = 0,71735$ $\sigma = 1,04842$
10°30°	сухой	суглинок	горизонтальная	распределение Вейбулла: $p(x) = \frac{c}{b} \left(\frac{x}{b}\right)^{c-1} e^{-\left(\frac{x}{b}\right)^{c}}$	b = 1,782212 c = 2,149668
			вертикальная	распределение Вейбулла	b = 1,381546 c = 2,163581
	влажный	суглинок	горизонтальная	распределение Вейбулла	b = 2,171357 c = 2,171995
			вертикальная	распределение Рэлея: $p(x) = \frac{x}{b^2} exp\left(-\frac{x^2}{2b^2}\right)$	<i>b</i> = 0,927724